x=12
3.小组讨论。
(1)看图列方程前首先要做什么?看图列出方程的关键是什么?
引导学生得出:看图列方程前,先读懂图中隐含的数量以及数量关系,哪些量是已知的,哪些量是未知的,列方程的关键是找到图中隐含的等量关系。
(2)解形如ax±b=c类型的方程的根据和解形如ax=b、x±a=b类型的方程有什么不同?
小组合作,师生讨论得出:
解形如ax±b=c类型的方程的根据是等式的性质,与形如ax=b、x±a=b类型的不同是连续两次运用等式的性质①和②。
在交流中使学生明确:
在解此类方程的过程中运用了两次等式的性质;解这种类型的方程,关键是要把3x看作是一个数,根据等式的性质,先求出3x ,再求出x 得多少。
教学教材第69页例5。
1.投影出示。
解方程2(x-16)=8。
2.讨论计算方法。
方法一:整体方法
教师提问:上面的方程能否用例4"整体"的思路方法来解答?如果可以,把谁看作整体?
小组讨论得出:在方程2(x-16)=8中,如果把x-16看作一个整体,这样就可以利用"整体"的方法来解答。
师生共同解答:
2(x-16)=8
解:2(x-16)÷2=8÷2--先把x-16看作一个整体。
x-16=4
x-16+16=4+16
x=20
方法二:先计算后解方程的方法
师:能否先计算方程的左面2(x-16),再解方程?