2019-2020学年数学高中人教版A必修5学案:1.2应用举例第二课时 Word版含解析
2019-2020学年数学高中人教版A必修5学案:1.2应用举例第二课时 Word版含解析第1页

第一章 解三角形

1.2 应用举例

1.2 应用举例(第2课时)

  

学习目标

  1.能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.

  2.本节课是解三角形应用举例的延伸.可以在温故知新中学会正确识图、画图、想图,逐步构建知识框架.

  3.进一步提升学习数学、应用数学的意识及观察、归纳、类比、概括的能力.

合作学习

  一、设计问题,创设情境

  塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家.他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行.他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已.

  塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等.

  设问:现实生活中,人们是怎样测量底部不可到达的建筑物的高度的呢?又是怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度的呢?今天我们就来共同探讨这方面的问题.

  二、信息交流,揭示规律

  思考:解决一些有关底部不可到达的物体高度测量的问题和解决距离问题是否具有一定的相似性?

  

  

  三、运用规律,解决问题

  【例1】 AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.

  

  

  问题1:这个建筑物就不好到达它的底部去测量,如果好到达的话,那直接用尺子去量一下就行了,那么大家思考一下如何去测量这个建筑物的高呢?