一、复习导入,生成问题。
1.解方程。
2x-3=5 4.5+3x=13.5
2.妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?学生读题后,独立列式计算,并说出数量关系。
苹果的总价+梨的总价=总钱数
2.4×2+2.8×3=13.2(元)
3.揭示课题:这节课我们继续学习实际问题与方程。(出示课题)
二、探索交流,解决问题。
1.教学例题3。
出示例题3。
把上面的例题改成例题3:妈妈买了苹果和梨各2kg,共付10.4元,已知梨每千克2.8元,苹果每千克多少钱?
提问:这道题与上一题有什么异同?(这道题的数量关系和上个例题一样;只是部分数字进行了改动,解题方法也和上题一样)
学生独立解答。
(1)学生审题,说出解题思路。
(2)口头列出方程:2x+2.8×2=10.4。
(3)在课本上写出解答过程。
全班交流汇报,教师引导总结解法:
(1)用未知数x表示每千克苹果的价钱。
(2)根据苹果的总价+梨的总价=总钱数列方程。2x表示苹果的总价,2.8×2表示梨的总钱数。
(3)根据解2x+2.8×2=10.4这个方程的方法,把2.8×2先算出来,把2x看作一个整体,转化成我们学过的方程的类型来解方程。
教师边讲解边板书。
解:设苹果每千克x元。
2x+2.8×2=10.4
2x+5.6=10.4
2x+5.6-5.6=10.4-5.6
2x=4.8
2x÷2=4.8÷2
x=2.4
(4)经检验,x=2.4是方程的解。
2.探究第二种解法。
提问:除了上面的方法外,还有什么方法?(学生独立思考后,试着用另一种方法列出方程,说出自己的思路)
让学生说出数量关系,并列出方程。
板书:(苹果的单价+梨的单价)×2=总钱数
解:设苹果每千克x元。
(x+2.8)×2=10.4
讨论:这个方程怎样解?自己动手试一试。
学生汇报交流。
教师引导学生总结:在解这个方程时,可以把小括号内的2.8+x看作一个整体,先求出2.8+x等于多少,再求出x等于多少。
板书:解:设苹果每千克x元。
(2.8+x)×2=10.4
(2.8+x)×2÷2=10.4÷2
2.8+x=5.2
2.8+x=5.2-2.8
x=2.4
3.比较两种解法。
提问:例3中的两种解法列出的方程有什么联系吗?
方程1:2x+2.8×2=10.4
方程2:(2.8+x)×2=10.4
学生自由发言。
讲解:从第二个方程到第一个方程,实际是利用了乘法分配律;从第一个方程到第二个方程;实际上是应用了乘法分配律的逆运算。
三、巩固应用,内化提高。
1.完成教材第77页"做一做"。
这道题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。
2. 店里运来150箱汽水,张叔叔每次运30箱,已经运了2次,剩下的还要几次可以运完?
3. 师徒合做360个零件,6天完成任务。师傅每天做35个,徒弟每天做多少个?.
4. 一块长方形木板的周长是60 dm,它的长是20 dm,宽是多少分米
四、回顾整理,反思提升。
提问:本节课你又学会了解哪些类型的方程?还有不明白的问题吗?
小结:这节课我学会了两积之和等于已知的总和及含有小括号的方程的解法。
板书设计:
实际问题与方程(3)
例3:苹果的总价+梨的总价=总钱数
两种水果单价总和×2=总钱数
方法一:
解:设苹果每千克x元。
2x+2.8×2=10.4
2x+5.6=10.4
2x+5.6-5.6=10.4-5.6
2x=4.8
2x÷2=4.8÷2
x=2.4
答:苹果每千克2.4元。
方法二:
解:设苹果每千克x元。
(2.8+x)×2=10.4
(2.8+x)×2÷2=10.4÷2
2.8+x=5.2
2.8+x-2.8=5.2-2.8
x=2.4
答:苹果每千克2.4元。 最佳解决方案
个
作业设计 基础:
1. 解方程
7.8x-2.4x=1.08
8x+2x=31.4
2(x+1)=6
3(x-4)=6
综合:
2.根据题意把方程补充完整。
(1)同学们植树,五(1)班植了35棵,五(2)班植了x棵,两班共植树72棵。
________________=72
(2)李娟同学买了2枝圆珠笔和3本练习本,共付7.2元,每本练习本0.8元,每枝圆珠笔x元。
________________=7.2
(3)水果店运来苹果420千克,每25千克装一箱,装了x箱后还剩20千克。
________________=420
拓展:
3.学校购买1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?
4.鸡和兔的数量相同,两种动物的腿加起来共有48条,鸡和兔各有多少只? 教学反思: