说明:焦点是F1(0,-c)、F2(0,c),其中c2=a2-b2
要点诠释:求双曲线的标准方程应从"定形"、"定式"和"定值"三个方面去思考."定形"是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;"定式"根据"形"设双曲线方程的具体形式;"定量"是指用定义法或待定系数法确定a,b的值.
要点二、双曲线的几何性质
标准方程 图形 性质 焦点 , , 焦距 范围 , , 对称性 关于x轴、y轴和原点对称 顶点 轴 实轴长=,虚轴长= 离心率 渐近线方程
要点三、直线与双曲线的位置关系
直线与双曲线的位置关系
将直线的方程与双曲线的方程联立成方程组,消元转化为关于x或y的一元二次方程,其判别式为Δ.