2018-2019学年北师大版选修1-1 2.1.1.2 椭圆的轨迹方程 作业
2018-2019学年北师大版选修1-1 2.1.1.2 椭圆的轨迹方程 作业第3页

  ∴1/2×8×b=12,∴b=3,

  又∵c=4,∴a2=b2+c2=25.

  ∴椭圆的标准方程为 x^2/25+y^2/9=1.

答案:x^2/25+y^2/9=1

10.如图,设点P是圆x2+y2=25上一动点,点D是点P在x轴上的投影,M为PD上一点,且|MD|=4/5|PD|.当P在圆上运动时,求点M的轨迹C的方程,并判断此曲线表示什么图形.

解:设点M的坐标为(x,y),点P的坐标为(xP,yP),

  由已知得{■(x_P=x"," @y_P=5/4 y"," )┤

  ∵点P在圆上,∴x2+(5/4 y)^2=25,

  即轨迹C的方程为 x^2/25+y^2/16=1.

  该曲线表示椭圆.

11.在直线l:x-y+9=0上取一点P,过点P以椭圆 x^2/12+y^2/3=1的焦点为焦点作椭圆.

(1)点P在何处时,点P到两个焦点的距离之和最短;

(2)求点P到两个焦点的距离之和最短时的椭圆方程.

解:(1)由题意知椭圆两焦点坐标分别为F1(-3,0),F2(3,0).

  设点F1(-3,0)关于直线l的对称点F'1的坐标为(x0,y0),

  则{■(y_0/(x_0+3)="-" 1"," @(x_0 "-" 3)/2 "-" y_0/2+9=0"," )┤

  解得{■(x_0="-" 9"," @y_0=6"," )┤

  ∴F'1(-9,6).

  则过点F'1和F2的直线方程为 (y"-" 6)/("-" 6)=(x+9)/(3+9),整理得x+2y-3=0,

  联立{■(x+2y"-" 3=0"," @x"-" y+9=0"," )┤

  解得{■(x="-" 5"," @y=4"," )┤

  即点P坐标为(-5,4).

  (2)由(1)知,2a=|F'1F2|=√180,

  ∴a2=45.

  ∵c=3,∴b2=a2-c2=36.

  ∴所求椭圆的方程为 x^2/45+y^2/36=1.

12.已知☉C1:(x-4)2+y2=132,☉C2:(x+4)2+y2=32,动圆C与☉C1内切同时与☉C2外切,求动圆圆心C的轨迹方程.

解:由已知可得☉C1与☉C2的圆心坐标与半径分别为:C1(4,0),r1=13;C2(-4,0),r2=3.

  设动圆的圆心为C,其坐标为(x,y),动圆的半径为r.

  由于☉C1与☉C相内切,依据两圆内切的充要条件,可得|C1C|=r1-r.0①

  由于☉C2与☉C相外切,依据两圆外切的充要条件,可得|C2C|=r2+r.0②

如图,由①+②可得|CC1|+|CC2|=r1+r2=13+3=16,