2018-2019学年人教B版 选修2-3 1.1基本计数原理 教案
2018-2019学年人教B版   选修2-3  1.1基本计数原理  教案第3页

(3)知识应用

  例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?

  分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.

  解:第 1 步,从 30 名男生中选出1人,有30种不同选择;

  第 2 步,从24 名女生中选出1人,有 24 种不同选择.

  根据分步乘法计数原理,共有

  30×24 =720

  种不同的选法.

  探究:如果完成一件事需要三个步骤,做第1步有种不同的方法,做第2步有种不同的方法,做第3步有种不同的方法,那么完成这件事共有多少种不同的方法?

   如果完成一件事情需要个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?

  一般归纳:

完成一件事情,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法......做第n步有种不同的方法.那么完成这件事共有

种不同的方法.

理解分步乘法计数原理:

  分步计数原理针对的是"分步"问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.

3.理解分类加法计数原理与分步乘法计数原理异同点

①相同点:都是完成一件事的不同方法种数的问题

②不同点:分类加法计数原理针对的是"分类"问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是"分步"问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.

3 综合应用

  例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.

  ①从书架上任取1本书,有多少种不同的取法?

  ②从书架的第1、2、3层各取1本书,有多少种不同的取法?

  ③从书架上任取两本不同学科的书,有多少种不同的取法?

  【分析】

  ①要完成的事是"取一本书",由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.

  ②要完成的事是"从书架的第1、2、3层中各取一本书",由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.

  ③要完成的事是"取2本不同学科的书",先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这

件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.

解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是