解 f′(x)=3ax2-4x+1.
(1)函数f(x)的图象过点(0,1)时,有f(0)=c=1.
当a=1时,f(x)=x3-2x2+x+1,f′(x)=3x2-4x+1,
由f′(x)>0,解得x<或x>1;
由f′(x)<0,解得
所以函数f(x)在和(1,+∞)上单调递增,
在上单调递减,
所以函数f(x)的极小值是f(1)=13-2×12+1+1=1.
(2)若f(x)在(-∞,+∞)上无极值点,
则f(x)在(-∞,+∞)上是单调函数,
即f′(x)=3ax2-4x+1≥0或f′(x)=3ax2-4x+1≤0恒成立.
①当a=0时,f′(x)=-4x+1,显然不满足条件;
②当a≠0时,f′(x)≥0或f′(x)≤0恒成立的充要条件是Δ=(-4)2-4×3a×1≤0,即16-12a≤0,解得a≥.
综上,a的取值范围为.
题型二 用导数求函数的最值
例4 (2018·贵阳检测)已知函数f(x)=-lnx.
(1)求f(x)的单调区间;
(2)求函数f(x)在上的最大值和最小值(其中e是自然对数的底数).
解 (1)f(x)=-lnx=1--lnx,
f(x)的定义域为(0,+∞).
∵f′(x)=-=,
由f′(x)>0,得0
∴f(x)=1--lnx在(0,1)上单调递增,在(1,+∞)上单调递减.
(2)由(1)得f(x)在上单调递增,在[1,e]上单调递减,