让我们将以前学过的向量的概念和运算回顾一下,看它们是只限于平面上呢?还是本来就适用于空间中。
请学生自行阅读空间向量的相关概念:空间向量定义、模长、零向量、单位向量、相反向量、相等向量。
请学生比较与平面向量的异同。
向量概念的关键词是大小和方向,所以它应既适用于平面上的向量,也适合于空间中的向量,二者的区别仅仅在于:在空间中比平面上有更多的不同的方向。因此平面几何中的向量概念和知识就可以迁移到空间图形中。
(1)空间任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量。
如图,对于空间任何两个向量,可以从空间任意一点O出发作,即用同一平面内的两条有向线段来表示
(2)在平面图形中向量加减法的可以通过三角形和平行四边形法则,同样对于空间任意两个向量都看作同一平面内的向量,它们的加法、减法当然都可以按照平面上的向量的加法和减法来进行,不需要补充任何新的知识,具体做法如下:
如图,可以从空间任意一点O出发作,并且从出发作,则.
探索1:空间三个以上的非零向量能否平移至一个明面上?
探索2:多个向量的加法能否由两个向量的加法推广?
(1) 思考《选2-1》课本P92探究题
归纳:向量加(减)法满足交换律和结合律。
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并标出化简结果的向量。(如图)
1.课本P92练习1-3
2.如图,在三棱柱中,M是的中点,
化简下列各式,并在图中标出化简得到的向量:
(1);
(2);
(3)
解:(1)
(2)
(3)