3.用课件演示用平移和旋转转化成长方形比较大小的过程。
教师指出:这其实是运用了一种解决问题的策略,叫做"转化"。(板书课题:解决问题的策略--转化)
4.提问:(1)这是把什么转化成了什么?
学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。
(2)转化过程中什么变了?什么没变?(形状变了,大小没变)
(三)回顾旧知,体会转化策略的运用
1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢?
学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。
2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。
四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。
3.举个例子说说你的发现。
学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数
②计算小数乘法时把小数乘法转化成整数乘法
提问:这里都用了转化策略,有什么共同地方?
引导学生观察并思考,体会到转化的实质--转化前和转化后计算结果不变。
小结:这么多地方用到转化的策略,说说你有什么体会?