①当a=0时,g(x)=1,
此时f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点.
②当a>0时,Δ=a2-8a(1-a)=a(9a-8).
函数f(x)在(-1,+∞)上单调递增,无极值点.
b.当a>时,Δ>0,
设方程2ax2+ax-a+1=0的两根为x1,x2(x1
因为x1+x2=-,所以x1<-,x2>-.
由g(-1)=1>0,可得-1
所以当x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;
当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;
当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.
因此函数f(x)有两个极值点.
③当a<0时,Δ>0,由g(-1)=1>0,
可得x1<-1
当x∈(-1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;
当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.
所以函数f(x)有一个极值点.
综上所述,当a<0时,函数f(x)有一个极值点;
当0≤a≤时,函数f(x)无极值点;
当a>时,函数f(x)有两个极值点.
命题点3 根据极值(点)求参数
例3 已知函数f(x)=-k,若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为________.
答案 (-∞,e]
解析 因为函数f(x)=-k,