一、创设情境,明确目标:
1.理解依次重复出现的意义。故事引入:今天老师给大家讲一个故事,从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事:从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事......
问:学生这个故事能讲完吗?(不能,因为它不断地重复。)
这种"依次不断重复"的情况我们可以称它为"循环"。(板书:循环)
2.初步感知循环小数。
出示教材第33页例7情境图,引导学生观察并说出图意,并找到数学信息,独立列算式。学生列式:400÷75。
让学生用竖式计算这个算式,并说一说在计算过程中你有什么发现。
通过计算,学生会发现这个算式的余数重复出现"25";商的小数部分连续地重复出现"3"。
3.引出课题。像这样继续除下去,能除完吗?(可能永远也除不完。)
揭题:那怎样表示这种永远也除不完的商?这种商有些什么特点?这节课我们来研究这个问题,也是我们要认识的"新朋友"--循环小数。
(板书课题:循环小数)
二、自主学习,合作探究:
1.认识循环小数。
引导学生思考:为什么商的小数部分总是重复出现"3",它和每次出现的余数有什么关系?(当余数重复出现时,商就要重复出现。)
让学生猜一猜400÷75的商下一位是多少?并计算验证。
引导学生说出:400÷75的商可以用省略号来表示永远除不尽的商。
(板书:400÷75=5.333...)
2.出示第33页例8的两道计算题,让学生自主计算,并说出商的特点。
在第2小题:78.6÷11计算到商的第三位小数时,让学生先停一停,看一看余数是多少,然后再接着除出两位小数,指导学生和除得的前几步比较,想一想继续除下去,商会是什么?
通过观察和比较,引导学生发现:余数重复出现5和6,如果继续除下去商就会重复出现4和5,总也除不尽。
3.引导学生比较400÷75,28÷18, 78.6÷11的商,你有什么发现?
引导学生发现:400÷75和28÷18的商,从小数部分的第一位起不断重复出现某个数字,78.6÷11的商,从小数部分的第二位起开始不断地依次重复出现数字4和5。
师小结:我们所说的重复也叫做循环,像5.333...1. 555...和7.14545...这样小数部分有一个数字或者几个数字依次不断重复出现的小数,就是循环小数。
4.引导学生自主学习。
师引导:循环小数有什么特点?在循环小数里,依次不断重复出现的数字叫什么?怎样表示循环小数呢?请同学们自主学习教材第33-34页的知识。
学生自学后指生回答,学习循环小数的概念。
循环小数:一个数的小数部分,从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。如:5. 333...的循环节是3;7 14545...的循环节是45。(板书)
5.师小结:今后在计算小数除法时,如果遇到除不尽的情况可以根据要求取商的近似值,也可以用循环小数表示除得的商。
三、展示交流,反馈诊断
1.完成教材第34页"做一做"第1题。学生自主完成,集体订正。
2.完成教材第34页"做一做"第2题。学生自主完成,并讨论:两个数相除,如果不能得到整数商,所得的商会有哪些情况?学生可能会说:商是小数,商是循环小数,而且有的能除尽,有的除不尽。
教师从而引出"有限小数"和"无限小数"的概念:小数部分的位数有限的小数是有限小数。如0. 9375是有限小数;小数部分的位数无限的小数是无限小数。如0. 2142857是无限小数。(板书)
师小结:我们现在学的小数比以前又扩大了,又增加了无限小数,而循环小数就是一种无限小数。
四、讲解点拨,总结提升
通过今天的学习,你有什么收获?
五、达标检测,巩固拓展
1.熟记概念。
2. 练习八4、5、题。 自主修改 用简便形式写出下面的循环小数。
5.333... 7.14545... 6.9258258...