(2)方法一 原不等式可化为或
解得或∴-3
∴原不等式的解集为.
方法二 原不等式可化为>0,
化简得>0,即<0,∴(2x+1)(x+3)<0,
解得-3
∴原不等式的解集为.
题型二 不等式恒成立问题
例2 设函数f(x)=mx2-mx-1.
(1)若对于一切实数x,f(x)<0恒成立,求实数m的取值范围;
(2)对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围.
解 (1)要使mx2-mx-1<0恒成立,
若m=0,显然-1<0,满足题意;
若m≠0,则即-4
(2)方法一 要使f(x)<-m+5在x∈[1,3]上恒成立,
就要使m2+m-6<0在x∈[1,3]上恒成立.
令g(x)=m2+m-6,x∈[1,3].
当m>0时,g(x)在[1,3]上是增函数,
∴g(x)max=g(3)=7m-6<0,∴0
当m=0时,-6<0恒成立;