4.若a>1,b<1,则下列结论中正确的是( )
A.1/a>1/b B.b/a>1
解析由a>1,b<1得a-1>0,b-1<0,所以(a-1)(b-1)<0,展开整理,得ab
答案D
5.已知1≤a+b≤5,-1≤a-b≤3,则3a-2b的取值范围是( )
A.[-6,14] B.[-2,14] C.[-6,10] D.[-2,10]
解析令3a-2b=m(a+b)+n(a-b),
则{■(m+n=3"," @m"-" n="-" 2"," )┤所以{■(m=1/2 "," @n=5/2 "." )┤
因为1≤a+b≤5,-1≤a-b≤3,
所以1/2≤1/2(a+b)≤5/2,-5/2≤5/2(a-b)≤15/2,
故-2≤3a-2b≤10.
答案D
解析∵a-1/a=("(" a+1")(" a"-" 1")" )/a<0,∴a<1/a.
7.已知-3
解析由题意可知0
答案(0,8)
8.设a>b>c>0,若x=√(a^2+"(" b+c")" ^2 ),y=√(b^2+"(" c+a")" ^2 ),z=√(c^2+"(" a+b")" ^2 ),则x,y,z之间的大小关系是 .(从小到大)
解析因为x2-y2=a2+(b+c)2-b2-(c+a)2=2c(b-a)<0,所以x
同理可得y
答案x
因为9<3a<21,-20<-2b<-2,所以-11<3a-2b<19,即3a-2b∈(-11,19).