∵a2·a3=a·q3=a1·a4=2a1,
∴a4=2.
又∵a4+2a7=a4+2a4q3=2+4q3=2×,
∴q=.
∴a1==16.S5==31.
答案:C
5.等比数列{an}中,a3=3S2+2,a4=3S3+2,则公比q等于( )
A.2 B.
C.4 D.
解析:a3=3S2+2,a4=3S3+2,等式两边分别相减得a4-a3=3a3,即a4=4a3,∴q=4.
答案:C
6.若数列{an}满足a1=1,an+1=2an,n=1,2,3,...,则a1+a2+...+an=________.
解析:由=2,∴{an}是以a1=1,q=2的等比数列,故Sn==2n-1.
答案:2n-1
7.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为________.
解析:∵S1,2S2,3S3成等差数列,∴4S2=S1+3S3,
即4(a1+a1q)=a1+3(a1+a1q+a1q2),
∴4(1+q)=1+3(1+q+q2),解之得q=.
答案:
8.等比数列的前n项和Sn=m·3n+2,则m=________.
解析:设等比数列为{an},则
a1=S1=3m+2,
S2=a1+a2=9m+2⇒a2=6m,
S3=a1+a2+a3=27m+2⇒a3=18m,
又a=a1·a3⇒(6m) 2=(3m+2)·18m
⇒m=-2或m=0(舍去).∴m=-2.
答案:-2
9.在等差数列{an}中,a4=10,且a3,a6,a10成等比数列,求数列{an}前20项的和S20.
解析:设数列{an}的公差为d,则