(2)求Sn的最小值;
(3)若数列{bn}是等差数列,且bn=,求非零常数c的值.(导学号51830095)
解:(1)∵数列{an}为等差数列,∴a3+a4=a2+a5=22.
又a3·a4=117,∴a3,a4是方程x2-22x+117=0的两实根,又公差d>0,∴a3 ∴a3=9,a4=13,得a1=1,d=4,∴an=4n-3. (2)由(1)知a1=1,d=4,∴Sn=na1+·d=2n2-n=2, ∴当n=1时,Sn最小,最小值为S1=a1=1. (3)由(2)知Sn=2n2-n,∴bn=, ∴b1=,b2=,b3=.∵数列{bn}是等差数列,∴2b2=b1+b3,即×2=,得2c2+c=0,∴c=-或c=0(舍去),故c=-. 11.已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36. (1)求d及Sn; (2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+...+am+k=65.(导学号51830096) 解:(1)由题意知(2a1+d)(3a1+3d)=36, 将a1=1代入上式解得:d=2或d=-5. 因为d>0,所以d=2. 从而an=2n-1,Sn=n2(n∈N*). (2)由(1)得am+am+1+am+2+...+am+k=(2m+k-1)(k+1). 所以(2m+k-1)(k+1)=65. 由m,k∈N*知2m+k-1≥k+1>1, 故所以