∴ ,解得,故选:D.
【点睛】本题主要考查了分段函数的单调性的应用,其中解答中正确理解分段的单调性,列出相应的不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
11.已知函数是定义在区间上的偶函数,当时,是减函数,如果不等式成立,则实数的取值范围是( )
A. B. C. D.
【答案】A
【解析】
试题分析:由已知可得,故选A.
考点:1、函数的单调性;2、函数的奇偶性;3、函数与不等式.
12.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是"关联函数",区间[a,b]称为"关联区间".若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是"关联函数",则m的取值范围是 ( ).
A. B. [-1,0] C. (-∞,-2] D.
【答案】A
【解析】
f(x)=x2-3x+4为开口向上的抛物线,g(x)=2x+m是斜率k=2的直线,可先求出g(x)=2x+m与f(x)=x2-3x+4相切时的m值.由f′(x)=2x-3=2得切点为,此时m=-,因此f(x)=x2-3x+4的图象与g(x)=2x+m的图象有两个交点只需将g(x)=2x-向上平移即可.再考虑区间[0,3],可得点(3,4)为f(x)=x2-3x+4图象上最右边的点,此时m=-2,所以m∈
二、填空题(本大题共4小题,共20.0分)