2019-2020学年北师大版必修1 3.2.2 指数运算的性质 作业
2019-2020学年北师大版必修1 3.2.2 指数运算的性质 作业第2页

解析:原式=8√3-6√3-2√3+√3=√3.

答案:√3

9.导学号85104059计算:

(1)(-1.8)0+(3/2)^("-" 2)×∛((3 3/8)^2 )-1/√(0"." 01)+√(9^3 );

(2)(2a^(2/3) b^(1/2))(-6a^(1/2) b^(1/3))÷(-3a^(1/6) b^(5/6)).

解:(1)原式=1+(2/3)^2×∛((27/8)^2 )-1/(0"." 1)+√(3^6 )

  =1+4/9×(3/2)^2-10+33=1+1-10+27=19.

  (2)原式=[2×(-6)÷(-3)]a^(2/3+1/2 "-" 1/6) b^(1/2+1/3 "-" 5/6)=4ab0=4a.

10.已知a,b是方程x2-6x+4=0的两个根,且a>b>0,求(√a "-" √b)/(√a+√b)的值.

解:∵a,b是方程x2-6x+4=0的两个根,

  ∴{■(a+b=6"," @ab=4"." )┤∵a>b>0,

  ∴√a>√b>0.∴(√a "-" √b)/(√a+√b)>0.

  又((√a "-" √b)/(√a+√b))^2=(a+b"-" 2√ab)/(a+b+2√ab)=(6"-" 2√4)/(6+2√4)=2/10=1/5,

  ∴(√a "-" √b)/(√a+√b)=√(1/5)=√5/5.

B组 能力提升

1.设a2n=3,a>0,则(a^3n+a^("-" 3n))/(a^n+a^("-" n) )的值为(  )

A.5/3 B.2 C.7/3 D.41/14

解析:由a2n=3,a>0,得an=√3,a-n=1/√3,a3n=(√3)3=3√3,a-3n=1/(3√3) .

  

  故(a^3n+a^("-" 3n))/(a^n+a^("-" n) )=(3√3+1/(3√3))/(√3+1/√3)=("(" 3√3 ")" ^2+1)/(√3×3√3+3)=28/12=7/3.

答案:C

2.若a>1,b>0,且ab+a-b=2√2,则ab-a-b的值为0(  )

A.√6 B.2或-2

C.-2 D.2

解析:∵(ab+a-b)2=8,∴a2b+a-2b=6,

  ∴(ab-a-b)2=a2b+a-2b-2=4.

  又ab>a-b(a>1,b>0),∴ab-a-b=2.

答案:D

3.若102x=25,10^(y/2)=5,则10y-x=     .

解析:由102x=25,得10x=5,∴10-x=(10x)-1=5-1.

  又10^(y/2)=(10y")" ^(1/2)=5,

  ∴10y=52,故10y-x=10y·10-x=52·5-1=5.

答案:5

4.若a^(1/2)-a^("-" 1/2)=m,则(a^2+1)/a=     .

解析:由a^(1/2)-a^("-" 1/2)=m,两边平方得,a+a-1-2=m2,

  即a+a-1=m2+2,故(a^2+1)/a=a+a-1=m2+2.

答案:m2+2