课堂探究
1.使用不等式的性质时要注意的问题
剖析:(1)在应用传递性时,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a≤b,b<ca<c.(2)在乘法法则中,要特别注意乘数c的符号,例如当c≠0时,有a>bac2>bc2;若无c≠0这个条件,则a>bac2>bc2就是错误结论(当c=0时,取"=").(3)a>b>0an>bn>0成立的条件是"n为大于1的自然数",假如去掉"n为大于1的自然数"这个条件,取n=-1,a=3,b=2,那么就会出现3-1>2-1,即>的错误结论.
2.不等式性质中的""和""表示的意思
剖析:在不等式的基本性质中,条件和结论的逻辑关系有两种:""与"",即推出关系和等价关系,或者说"不可逆关系"与"可逆关系".这要求必须熟记与区别不同性质的条件.如a>b,ab>0<,而反之则包含几类情况,即若<,则可能有a>b,ab>0,也可能有a<0<b,即"a>b,ab>0"与"<"是不等价关系.
3.文字语言与数学符号语言之间的转换
剖析:
文字语言 数学符号 文字语言 数学符号 大于 > 至多 ≤ 小于 < 至少 ≥ 大于等于 ≥ 不少于 ≥ 小于等于 ≤ 不多于 ≤ 在数学命题中,文字语言的表述通常要"翻译"成相应的数学符号语言,只有准确地转换,才能正确地解答问题.
题型一 不等式的基本性质
【例1】若a,b,c∈R,a>b,则下列不等式成立的是( )
A.<
B.a2>b2
C.>
D.a|c|>b|c|
解析:本题只提供了"a,b,c∈R,a>b"这个条件,而不等式的基本性质中,几乎都有类似的前提条件,但结论会根据不同的要求有所不同,因而这需要根据本题的四个选