智能水凝胶功能材料
智能水凝胶功能材料封面图

智能水凝胶功能材料

褚良银, 谢锐, 巨晓洁, 著

出版社:化学工业出版社

年代:2013

定价:380.0

书籍简介:

智能水凝胶材料能够响应环境的物理和化学信号刺激,在生物医药、化学化工、环境等领域具有广泛的应用前景。本书在国际上首次全面系统地介绍了现代智能水凝胶功能材料的性能与应用,包括大凝胶到微凝胶的设计思想、制备策略及方法、微结构及性能等,详细介绍了各种功能材料的响应性能,如温度响应、pH响应、pH/温度双响应、葡萄糖响应、乙醇响应、离子识别、分子识别等。本书大部分内容来自作者团队近年来在国家自然科学基金、国家973计划支持下取得的的最新成果,如在国际上开创了反相温敏开关膜控制释放的新模式,创建了特殊分子识别型智能化控释微囊膜新系统,提出了强化智能膜系统控释速率的新途径,创建了具有快速响应开关的微囊膜新体系,创建了正相温敏性单分散微球新体系,建立了采用膜乳化方法制备单分散温敏性微囊的新方法等,是一本具有国际一流水平的学术专著。

作者介绍:

褚良银,(1967-),男,湖北五峰人,土家族,国家杰出青年基金获得者,教育部长江学者特聘教授,四川大学化工学院副院长,教育部“长江学者和创新团队发展计划”创新团队带头人,英国伯明翰大学化学工程学院名誉教授,中国化工学会理事,四川省过滤与分离重点实验室主任,中国膜工业协会专家委员会委员,成都市第十五届人民代表大会代表,中国人民政治协商会议第十届四川省委员会委员,四川省青年联合会第十一届委员会委员,九三学社四川大学委员会副主委等。《膜科学与技术》、《化工进展》、《中国科技论文在线》(化学/化工卷)、Global Journal of Physical Chemistry、Advances and Applications in Fluid Mechanics、American Journal of Environmental Sciences等国内外重要期刊主编与编委。

书籍目录:

PartⅠ Thermo.responsiveHydrogeIFunctionaIMaterials

1 Structure—Function Relationship ofThermo—responsive Hydrogels

1.1Introduction

1.2Effect oflnternal Microstructure on the Equilibrium Thermo—responsive Phase Transition

1.3Effect oflnternal Microstructure on the Dynamic Thermo—responsive Phase Transition

1.4Effect of Internal Microstructure on the Thermo—responsive Controlled—Release Characteristics

1.5 Effect oflnternal Microstructure on the MechanicalStrength of Thermo—responsive Hydrogels

1.6 Summary

References

2 Preparation and Properties of Monodisperse Thermo—responsive Microgels

2.1Introduction

2.2Submicron—Sized Monodisperse Thermo—responsiveCore—Shell Hydrogel Microspheres Fabricated via Surfactant—Free Emulsion Polymerization

2.2.1 Preparation of P(NIPAM—co—St) Seeds

2.2.2Preparation of Core—Shell Microsphereswith PNIPAM Shell Layers

2.2.3 Monodispersity ofCore—Shell Microsphereswith P(NIPAM—co—St) Cores and PNIPAMShell Layers

2.2.4 Thermo—responsive Characteristicsof the Core—Shell Microspheres with PNIPAM Shell Layers

2.3 Positively Thermo—responsive Submicron—SizedMonodisperse Core—Shell Hydrogel Microspheres

2.3.1Preparation ofPositively Thermo—responsive Submicron—Sized Monodisperse Core—ShellHydrogelMicrospheres

2.3.2 Morphological Analyses of the Microspheres

2.3.3 Positively Thermosensitive Swelling Characteristics

2.4 Monodisperse Thermo—responsive HydrogelMicrospheres and Microcapsules Preparedvia Membrane Emulsification

2.4.1Strategies for Preparation ofMonodisperse PNIPAM Microspheres and Microcapsules via Membrane Emulsificatio

2.4.2Morphology of Prepared MonodispersePNIPAM Microspheres

2.4.3Morphology of Prepared Monodisperse PNIPAM Microcapsules

2.4.4 Effect of Freeze—Drying and RehydratingTreatment on the Thermo—responsiveCharacteristics of PNIPAM Microspheres

2.5 Monodisperse Thermo—responsive Hydrogel Microspheres and Microcapsules Fabricated with Microfluidics

2.5.1Microfluidic Fabrication ofMonodisperseThermo—responsive Microgels with TunableVolume—PhaseTran sitionKinetics

2.5.2 FabricationofMonodisperse Thermo—responsive Microgelsin a Microfluidic Chip

2.5.3Fabrication ofMonodisperse Microspheres with PNIPAM Core and Poly(2—HydroxyethylMethacrylate) (PHEMA) She

2.6 Summary

References

3 Flow and Aggregation Characteristics of Thermo—responsive Microgels During Phase Transition

3.1 Introduction

3.2Flo and Aggregation Characteristics of Thermo—responsive Spheres During the Phase Transition

3.2.1 Preparation of Monodisperse PNIPAMHydrogel Spheres

3.2.2Thermo—responsive Volume—Phase Transition Characteristics of PNIPAM Hydrogel Spheres

3.2.3 Flow Characteristics of PNIPAM HydrogelSpheres During the Phase Transitionin a Transparent Glass Pipe

3.3Flow Characteristics of Thermo—responsiveMicrospheres in Microchannel During the Phase Transition

3.3.1 Synthesis of Microspheres in a SimpleMicrofluidic Device

3.3.2 Flow Characteristics of PNIPAMMicrospheres in Horizontal Microchannel at Low Reynolds Number of Fluid

3.3.3 Effect of the Diameter Ratio of PNIPAMMicrosphere to Microchannel on the FlowCharacteristics

3.4 Effects of Microchannel Surface Property on FlowBehaviors of Thermo—responsive Microspheres During the Phase Tran sition

3.4.1 Modification of Inner Surface of Glass Microchannel

3.4.2 Characterization of Wettability and Roughness of Modified Glass Microchannels

3.4.3 Effects of Surface Wettability and Roughnessof Microchannel on the Average Velocity of Fluid in Microchannel

3.4.4 Effect of Surface Wettability and Roughness of Microchannel on Aggregation Behaviorsof PNIPAM Microspheres During the Phase Transition

3.4.5Effect of Surface Wettability of Microchannel on Flow Characteristics of PNIPAM Microspheres

3.4.6 Effect of Surface Roughness of Microchannel on Flow Characteristics of PNIPAM Microspheres

3.4.7 Flow Behaviors of PNIPAM Microspheresin Microchannel with Hydrophobicand Rough Surface During the Phase Transition

3.5Summary

References

4 Polyphenol—Induced Phase Transition of Thermoresponsive Hydrogels

4.1 Introduction

4.2Phase Transition Behaviors of PNIPAM MicrogelsInduced by Tannic Acid

4.2.1Preparationof MonodispersePNIPAM Microgels

4.2.2 Dynamic Isothermal Volume—Phase Transition of PNIPAM Microgels Induced by TA

4.2.3Equilibrium Isothermal Volume—PhaseTransition of PNIPAM Microgels Induced by TA

4.2.4Thermosensitive Phase Transition of PNIPAMMicrogels in TA Solutions

4.3 Phase Transition Behaviors of PNIPAM MicrogelsInduced by Ethyl Gallate

4.3.1 Preparation of PNIPAM Microspheres and Core—Shell PNIPAM Microcapsules

4.3.2 Thermo—responsive Phase Transition Behaviors of PNIPAM Microspheres in EG Solution

4.3.3The Intact—to—Broken TransformationBehaviors of Core—Shell PNIPAM Microcapsules in Aqueous Solutionwith Varying EG Concentration

4.4 Summary

References

5 Functional Membranes with Thermo—responsive Hydrogel Gates

5.1Introduction

5.2Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Plasma—InducedPore—Filling Graft Polymerizatio

5.2.1Regulation of Response Temperatureof Thermo—responsive Membranes

5.2.2 Effect of Grafting Degree on the Thermo—responsive Gating Characteristics

5.2.3Gating Characteristics of Thermo—responsiveMembranes with Grafted Linearand Cross—linked Hydrogel Gates

5.2.4Membranes with NegativelyThermo—responsive Hydrogel Gates

5.2.5 Composite Thermo—responsive Membrane System

5.2.6Thermo—responsive Affinity Membrane

5.3Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Atom—Transfer Radical Polymerization

5.4Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Free—Radical Polymerization

5.5Summary

References

6 Functional Microcapsules with Thermo—responsiveHydrogel Shells

6.1 Introduction

6.2 Functional Microcapsules with GraftedThermo—responsive Hydrogel Chains in the Porous Membranes as Gates

6.3 Functional Microcapsules with Thermo—responsiveMicrogels in the Membranes as Gates

6.4Functional Microcapsules with Thermo—responsiveCross—linked Hydrogels as Membranes

6.5Summary

References

内容摘要:

《智能水凝胶功能材料(英文)》在国际上首次全面系统地介绍了现代智能水凝胶功能材料的构建、性能与应用,包括从大凝胶到微凝胶的设计思想、制备策略及方法、微结构及性能等,详细介绍了各种智能水凝胶功能材料的响应性能,如温度响应、pH响应、pH/温度双响应、葡萄糖响应、乙醇响应、离子识别响应、分子识别响应等。《智能水凝胶功能材料(英文)》大部分内容来自作者团队近年来在国家自然科学基金、国家973计划支持下取得的最新研究成果,是一本具有国际一流水平的学术专著。

书籍规格:

书籍详细信息
书名智能水凝胶功能材料站内查询相似图书
9787122176301
如需购买下载《智能水凝胶功能材料》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位化学工业出版社
版次1版印次1
定价(元)380.0语种简体中文
尺寸24 × 17装帧平装
页数印数

书籍信息归属:

智能水凝胶功能材料是化学工业出版社于2013.8出版的中图分类号为 TQ436 的主题关于 水凝胶-智能材料-功能材料-研究 的书籍。