工科数学分析教程
工科数学分析教程封面图

工科数学分析教程

杨小远, 孙玉泉, 薛玉梅, 杨卓琴, 编著

出版社:科学出版社

年代:2011

定价:35.0

书籍简介:

本书面对工科学生,将数学建模的思想引入数学分析课程,展开以问题驱动的研究性教学方式进行系列的开放式讲课,深化数学理念和数学背景的应用。加强应用数学的能力。本教材培养学生的创新思维,给学生对数学思维的应用和学习提供了新思路。本课程是北京市精品课程,是北京航空航天大学校级教改项目的教材。

书籍目录:

前言

第1章 数列极限

1.1 数列与数列极限基本定义

1.2 收敛数列的性质

1.3 数列极限的推广

1.4 单调有界定理及其应用

1.5 实数的完备性:Cauchy收敛定理

1.6 实数的连续性:上确界下确界存在定理

1.7 有限覆盖定理

1.8 上极限与下极限的概念及应用

1.9 关于实数的连续性与完备性的进一步讨论

1.10 数列极限应用举例

1.11 混沌现象

探索类问题

第2章 函数极限与连续

2.1 集合的映射

2.2 集合的势

2.3 函数的基本概念和性质

2.4 函数极限的定义与基本理论

2.5 连续函数

2.6 函数极限的其他形式

2.7 收敛速度问题:无穷小与无穷大的阶的比较

2.8 函数的一致连续性

2.9 有限闭区间上连续函数的性质

2.10 关于函数极限和连续的进一步讨论

探索类问题

第3章 函数的导数

3.1 切线和速度问题

3.2 导数的定义

3.3 导数的运算法则

3.4 高阶导数

3.5 隐函数和参数方程的求导

3.6 微分中值定理

3.7 利用导数研究函数

3.8 L'Htospital法则

3.9 导数综合应用

探索类问题

第4章 Taylor公式与函数插值逼近

4.1 函数的微分:线性逼近

4.2 带Peano余项的Taylor定理

4.3 带Lagrange余项和Cauchy余项的Taylor定理

4.4 函数插值逼近初步

4.5 Taylor公式的应用:Richardson外推

探索类问题

第5章 不定积分

5.1 原函数的定义

5.2 不定积分求解策略Ⅰ:第一类换元公式

5.3 不定积分策略Ⅱ:分部积分公式

5.4 不定积分策略Ⅲ:第二类换元公式

5.5 几类特殊函数的不定积分策略

探索类问题

第6章 函数的Riemann积分与Ikbesgue积分初步

6.1 定积分的基本概念

6.2 可积的条件

6.3 微积分的基本定理

6.4 定积分的计算:分部积分与换元公式

6.5 积分中值定理

6.6 关于定积分的进一步讨论:Lebesgue定理

6.7 Lebesgue积分初步

6.8 定积分的数值计算

探索类问题

第7章 定积分的应用

7.1 微元法

7.2 平面图形的面积

7.3 旋转曲面的面积

7.4 旋转体的体积

7.5 平面曲线的弧长

7.6 平面曲线的曲率

7.7 定积分在物理中的应用

探索类问题

第8章 广义积分

8.1 无穷区间上积分的基本概念和计算

8.2 无穷区间上广义积分的收敛性问题

8.3 无穷区间广义积分的Dirichlet和Abel判定定理

8.4 瑕积分的收敛与计算

8.5 关于广义积分几个问题的思考

探索类问题

第9章 数项级数

9.1 数项级数的收敛性

9.2 正项级数的比较判别法

9.3 正项级数的其他判别法

9.4 一般级数的收敛问题

9.5 绝对收敛和条件收敛

9.6 级数的乘法

9.7 无穷乘积

探索类问题

第10章 函数序列与函数项级数

10.1 函数序列和函数项级数的几个基本概念

10.2 函数序列的一致收敛性

10.3 函数项级数的一致收敛性

10.4 函数项级数和函数的性质

10.5 幂级数

10.6 幂级数的应用

探索类问题

参考文献

内容摘要:

《工科数学分析教程(上)》将微积分经典内容进行拓展与延伸,力求反映当代数学的发展趋势,为此引入了分支与混沌、分数阶傅里叶变换与小波变换等内容。与传统的数学分析教材不同,本书设置了系列探索类问题,目的是培养学生的开放式思维和独立思考问题的能力。根据信息化背景下对人才的要求,本书内容与计算机和信息技术相结合,增加了非线性方程数值方法、函数多项式插值逼近及外推算法、数值积分、非线性数值优化初步以及常微分方程数值求解等内容。 全书分上、下两册,本书为上册,内容包括:数列极限、函数极限与连续、函数的导数、Taylor公式与函数插值逼近、不定积分、函数的 Riemann积分与Lebesgue积分初步、定积分的应用、广义积分、数项级数、函数序列与函数项级数。 《工科数学分析教程(上)》可作为高等院校非数学专业的微积分教材,也可作为其他科研人员的参考书。本书由杨小远等编著。

编辑推荐:

《工科数学分析教程》将微积分经典内容进行拓展与延伸,力求反映当代数学的发展趋势,为此引入了分支与混沌、分数阶傅里叶变换与小波变换等内容。本书为上册,内容包括:数列极限、函数极限与连续、函数的导数、Taylor公式与函数插值逼近、不定积分、函数的Riemann积分与Lebesgue积分初步、定积分的应用、广义积分、数项级数、函数序列与函数项级数。本书由杨小远等编著。

书籍规格:

书籍详细信息
书名工科数学分析教程站内查询相似图书
9787030318169
如需购买下载《工科数学分析教程》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN
出版地北京出版单位科学出版社
版次1版印次1
定价(元)35.0语种简体中文
尺寸24 × 17装帧平装
页数 334 印数

书籍信息归属:

工科数学分析教程是科学出版社于2011.8出版的中图分类号为 O17 的主题关于 数学分析-高等学校-教材 的书籍。