出版社:机械工业出版社
年代:2009
定价:40.0
本书为数学系各专业的学生加强数学分析训练,准备考研复习而写。除了对一些重要的,而且容易混淆的概念和理论进行深入的讲解外,着重介绍解题思路、方法和技巧等。
序
前言
第一讲 极限
一、用极限的定义验证极限
二、用单调有界定理证明极限的存在性
三、用迫敛性定理求极限
四、用柯西收敛准则证明极限的存在性
五、用施图兹定理求极限
六、用泰勒展开求极限
七、用中值定理求极限
八、两个重要极限·罗比塔法则
九、用定积分的定义求极限
十、其他
第二讲 一元函数的连续性
一、函数的连续性及其应用
二、一致连续性
第三讲 一元函数的微分学
一、导数与微分
二、高阶导数
三、微分中值定理及其应用
四、泰勒公式
五、函数零点个数的讨论
第四讲 一元函数的积分学
一、不定积分的计算
二、定积分的计算
三、函数的可积性理论
四、定积分的性质及其应用
五、广义积分
第五讲 级数
一、数项级数
二、函数项级数
三、幂级数
四、傅里叶级数
第六讲 多元函数的微分学
一、多元函数的极限与连续
二、多元函数的偏导数与全微分
三、隐函数(组)存在定理及隐函数求偏导
四、偏导数的应用
第七讲 多元函数的积分学
一、含参变量积分
二、重积分
三、曲线积分
四、曲面积分
第八讲 不等式
一、几个著名的不等式
二、利用凸函数的性质证明不等式
三、利用函数的单调性与极值证明不等式
四、积分不等式
参考文献
《数学分析选讲》共分八讲。第一讲介绍极限的思想、各种求解方法和证明极限存在的各种技巧;第二讲介绍函数一致连续性的思想和证明方法及技巧;第三讲介绍与微分中值定理(包括泰勒公式)有关的思想和解决问题的方法;第四讲介绍定积分的重要计算技巧和证明函数可积性的方法;第五讲介绍各类级数收敛性的判别方法和技巧,并对函数项级数和函数性质进行了详尽的讨论;第六讲介绍多元函数的各种性质及应用;第七讲介绍各类积分(特别是第二类曲面积分)的计算方法和技巧;第八讲介绍证明不等式的常用方法和技巧。《数学分析选讲》是“数学分析选讲”课程的课本、也可作为考研复习资料、一年级学生的参考书,还可作为教师的参考书。
书籍详细信息 | |||
书名 | 数学分析选讲站内查询相似图书 | ||
9787111276197 如需购买下载《数学分析选讲》pdf扫描版电子书或查询更多相关信息,请直接复制isbn,搜索即可全网搜索该ISBN | |||
出版地 | 北京 | 出版单位 | 机械工业出版社 |
版次 | 1版 | 印次 | 1 |
定价(元) | 40.0 | 语种 | 简体中文 |
尺寸 | 19 | 装帧 | 平装 |
页数 | 458 | 印数 | 3000 |
数学分析选讲是机械工业出版社于2009.08出版的中图分类号为 O17 的主题关于 数学分析-高等学校-教材 的书籍。